Beyond principlism: Practical strategies for ethical AI use in research practices

The rapid adoption of generative artificial intelligence (AI) in scientific research, particularly large language models (LLMs), has outpaced the development of ethical guidelines, leading to a “Triple-Too” problem: too many high-level ethical initiatives, too abstract principles lacking contextual and practical relevance, and too much focus on restrictions and risks over benefits and utilities. Existing approaches—principlism […]

Continue Reading

Designing Reliable Experiments with Generative Agent-Based Modeling: A Comprehensive Guide

In social sciences, researchers often face challenges when conducting large-scale experiments, particularly due to the simulations’ complexity and the lack of technical expertise required to develop such frameworks. Agent-Based Modeling (ABM) is a computational approach that simulates agents’ actions and interactions to evaluate how their behaviors influence the outcomes. However, the traditional implementation of ABM […]

Continue Reading